SWE 637 Sottware Testing
Activities, week 2.

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Class Activity #2

Consider exercises 5 and 7 in Chapter 1 (p. 13-17)

a) what is the fault?
b) if possible, identify a test case that does not execute the fault.

c) if possible, identify a test case that executes the fault, but does not result in an
error.

d) if possible, identify a test case that results in an error, but not a failure, and identity
any initial error state.

e) if possible, identify a test case that causes a failure

Class Activity #2. (ex. 5, part 1)

The fault:
/**
* Find last index of element
* A test case that does not execute the fault;

* @param x array to search

* @param y value to look for

* @return last index of y in x; -1 if absent
* @throws NullPointerException if x is null

*/ A test case that does not result in an error:

public static int findLast (int[] x, int y) {
for (int i=x.length-1; i > @; i--) {

if (x[1] =y) {
return 1i;
}

y An error that does not result in a failure:

return -1;

}
// test: x = [2, 3, 5], y = 2; Expected = ©

A failure:

Class Activity #2 (ex. 5, part 2.)

/**
* Find last index of zero
ES

* @param x array to search
k

* @return last index of @ in x; -1 if absent
* @throws NullPointerException if x is null
*/
public static int lastZero (int[] x) {
for (int i=0; i < x.length; i++) {
if (x[i] == @) {
return i;
}

}

return -1;

}
// test: x = [0, 1, O]; Expected = 2

a) what is the fault?

b) if possible, identify a test case that does not
execute the fault.

c) if possible, identify a test case that executes the
fault, but does not result in an error.

d) if possible, identify a test case that results in an
error, but not a failure, and identify any initial error
state.

e) if possible, identify a test case that causes a failure

Class Activity #2 (ex. 5, part 2.)

/**
* Find last index of zero
ES

* @param x array to search
k

* @return last index of @ in x; -1 if absent
* @throws NullPointerException if x is null
*/
public static int lastZero (int[] x) {
for (int i=0; i < x.length; i++) {
if (x[i] == @) {
return i;
}

}

return -1;

}
// test: x = [0, 1, O]; Expected = 2

The fault;

A test case that does not execute the fault;

A test case that does not result in an error:

An error that does not result in a failure:

A failure:

Class Activity #2 (ex. 5, part 3)

/**
* Count positive elements
* Note: zero is not considered positive
*
* @param x array to search
* @return count of positive elements in x
* @throws NullPointerException if x is null
*/
public static int countPositive (int[] x) {
int count = ©;
for (int i=0; i < x.length; i++) {
if (x[1] >= 0) {
count++;
}
}

return count;

}

// test: x = [-4, 2, 0, 2]; Expected = 2

a) what is the fault?

b) if possible, identify a test case that does not
execute the fault.

c) if possible, identify a test case that executes the
fault, but does not result in an error.

d) if possible, identify a test case that results in an
error, but not a failure, and identify any initial error
state.

e) if possible, identify a test case that causes a failure

Class Activity #2 (ex. 5, part 3)

/**
* Count positive elements
* Note: zero is not considered positive
*
* @param x array to search
* @return count of positive elements in x
* @throws NullPointerException if x is null
*/
public static int countPositive (int[] x) {
int count = ©;
for (int i=0; i < x.length; i++) {
if (x[1] >= 0) {
count++;
}
}

return count;

}

// test: x = [-4, 2, 0, 2]; Expected = 2

The fault;

A test case that does not execute the fault:

A test case that does not result in an error:

An error that does not result in a failure:

A failure:

Class Activity #2 (ex. 5, part 4)

a) what is the fault?

/** : : : :
* Count odd or positive elements b) if possible, identify a test case that does not

. execute the fault.

* @param X array to search
* @return count of odd/pos elements in x
* @throws NullPointerException if x is null

¥/ c) if possible, identify a test case that executes the

public static int oddOrPos (int[] x) {

int count = o; fault, but does not result in an error.
for (int i=0; i < x.length; i++) {
if (x[1]%2 == 1 || x[1] > @) {

, o d) if possible, identify a test case that results in an
} error, but not a failure, and identify any initial error
return count; State.

}

// test: x = [-3, -2, 0, 1, 4]; Expected = 3

e) if possible, identify a test case that causes a failure

Class Activity #2 (ex. 5, part 4)

/**
* Count odd or positive elements
*

* @param X array to search
* @return count of odd/pos elements in x
* @throws NullPointerException if x is null
*/
public static int oddOrPos (int[] x) {
int count = 0;
for (int i=0; i < x.length; i++) {
if (x[i]%2 == 1 || x[1i] > 9) {
count++;
}

}

return count;

}

// test: x = [-3, -2, 0, 1, 4]; Expected = 3

The fault;

A test case that does not execute the fault:

A test case that does not result in an error:

An error that does not result in a failure:

A failure:

Class Activity #2 (ex. 7, part 2.)

public class BigDecimalTest {
BigDecimal x = new BigDecimal (“1.0”);
BigDecimal y = new BigDecimal (“1.00%);
// Fact: !x.equals(y), but x.compareTo(y)==0

Set <BigDecimal> tree = new TreeSet<BigDecimal>();
Set <BigDecimal> hash;

@Before public void setUp() {
X = new BigDecimal("1.0");
y = new BigDecimal("1.00");
// Fact: Ix.equals(y), but x.compareTo(y) == ©

tree = new TreeSet <BigDecimal> ();
hash = new HashSet <BigDecimal> ();

}

// this test fails!
@Test public void inconsistentSets() {
tree.add(x); tree.add(y);
// TreeSet uses compareTo(), so tree now has 1 element

hash.add (x);
hash.add(y);
// HashSet uses equals(), so hash now has 2 elements

assertEquals(tree, hash);
// hence the above assertion cannot possibly be true

a) what is the fault?

b) If possible, identify a test case that does not
execute the fault.

c) if possible, identify a test case that executes
the fault, but does not result in an error.

d) if possible, identify a test case that results in
an error, but not a failure, and identify any initial
error state.

e) if possible, identify a test case that causes a
failure

EXercise # answers + PIscnssion

The fault:

BigDecimal's equals() requires instances to be the same in scale and value, so that *1.0" #

“1.00% compareTo() Only requires instances to be the same in value, so that “1.0” == “1.00"
[f we assume compareTo() is correct and want to change equals),), that implies
that hashcode() IS alSo incorrect.

A test case that does not execute the fault:

Any code that does not call equals() or hashCode(), including methods of HashSet, will not
reach the fault.

A test case that does not result in an error:

Tests of HashSet using only different values or the same values with the same scale reach
the fault but do not result in an error.

An error that does not result in a failure:

None - tests of HashSet using the same values but different scales reach the fault, cause an
error, and result in a failure.

